【目的】
日常臨床において四肢の骨折や髕帯損傷等の治療にあたって、ギブス固定などを用いて患肢の安静・不動化により組織修復を図る手技が広く行われている。しかし、このような関節の不動化は痛みなどの感覚系の機能異常を引き起こすことが指摘されており、難治性である複合性局所疼痛症候群（CRPS）の要因の一つであることが示唆されている。我々はこれまでに関節不動化モデル動物を用いた解析によって、脊髄後根神経節（dorsal root ganglion：DRG）ニューロンのカルサイトニン遺伝子関連ペプチド（calcitonin-gene related peptide：CGRP）陽性細胞のサブポピュレーションが大型化すること、脊髄後角深層のCGRPの発現が増加すること、脊髄後角における広動域（wide-dynamic range：WDR）ニューロンが活性化していることを明らかにし、これらの変化がアルギニニアや痛覚過敏を引き起こしている要因の一つであると考えている(Ushida T, J Orthop Sci. 2001: Nishigami T, Neurosci Lett. 2009)しかし、臨床において、CRPS症例では機械的痛覚過敏のみではなく、熱性あるいは冷性痛覚過敏が生じることが報告されているが、関節不動化後にこのような変化が生じているかは明らかではない。本研究の目的は関節不動化モデル動物を用いて、熱性痛覚過敏が生じるかを行動学的に評価し、さらに、熱性痛覚過敏に関与しているカプサイシン受容体（transient receptor potential vanilliod1：TRPV1）および神経栄養因子（nerve growth factor：NGF）の免疫組織化学的変化を検討することである。

【方法】
実験動物は8-10週齢のSD系雄性ラット14匹とした。関節不動化は右手関節を最大伸展位としギブス固定を5週間行った。熱性痛覚過敏を評価するためにギブス除去6時間後にプランターテストを行った。痛み反応の潜時の測定を4週回以上、得られた値を平均したものを採用した。ついで、ギブス除去24時間後に安楽死させ、灌流固定し、C7, C8のDRGを採取した。解凍切片作成後に、12 μmに薄切し、TRPV1、NGF抗体にて免疫組織化学的染色を施した。解析はDRGにおける総細胞数に対するTRPV1、NGF陽性細胞数の割合をそれぞれ求めた。また、TRPV1、NGF陽性細胞の断面積を画像解析ソフトウェア（NIH Image）にて測定した。統計解析として、プランターテスト、陽性細胞数の割合をMann-Whitney’s U検定にて有意な差を求めた。TRPV1、NGF陽性細胞群の断面積の分布の差についてはKolmogorov-Smirnov testを用いて不動化側と対照側で比較した。なお、有意水準は5％未満とした。

【結果】
プランターテストによる潜時は不動化側では4.9秒（4.1-5.2）、対照側では6.0秒（5.7-6.6）であり、不動化側と対照側で有意な差が認められた。TRPV1の細胞数は不動化側では33.6%（30.6-35.8）、対照側では23.5%（22.0-27.8）、NGFの総細胞数は不動化側では34.0%（30.0-35.9）、対照側では23.5%（21.7-24.5）であり、それぞれ不動化側と対照側で有意な差が認められた。また、TRPV1、NGF陽性細胞群の断面積の分布の差についてもそれぞれ不動化側と対照側で有意な差が認められた。

【考察】
本研究によって、関節の不動化は熱性痛覚過敏を引き起こすこと、TRPV1、NGF陽性細胞数の増加および断面積のサブポピュレーションが大型化することが認められた。TRPV1のノックアウトマウスでは熱性痛覚過敏が消失することやTRPV1のアントゴニストを未梢組織やDRGに投与すると、熱刺激に対するWDRニューロンの活動が減少することが報告されている。また、TRPV1の発現はNGFによって調節されていることが知られている。以上のことを総合すると、関節の不動化によって、未梢組織にNGFが誘導され、DRGにおいてTRPV1の合成が増加され、熱性痛覚過敏を引き起こしていることが予想される。