口腔扁平上皮癌は、頭頸部領域における最も発生頻度の高い悪性腫瘍であり、外科療法、化学療法、放射線療法などによる治療が行われている。しかし、診断、治療技術の向上が著しい近年においても尚、その予後は不良な疾患である。

本研究は、様々な癌腫に対する抗腫瘍効果が知られている Plumbagin (PL) を用いて、口腔扁平上皮癌細胞株発の細胞増殖に対する抗腫瘍効果および、その分子機構を解析することで、PL の抗腫瘍効果の有用性を究明するものである。

方法は PL 処理による口腔扁平上皮癌細胞株発の細胞生存率 (MTT アッセイ法) とアポトーシス（Annexin V/PI 染色法）を解析した。また、PL 処理による口腔扁平上皮癌細胞株発のミトコンドリア膜電位活性の消失、活性酸素種 (ROS) 発現をフローサイクルメトリ測定により検討した。加えて、PL に誘導されるアポトーシスにおける JNK 蛋白活性、P53 経路についてフローサイクルメトリ測定により検討した。

MTT assay において、口腔扁平上皮癌細胞株に対する PL の IC50 は、3.87 14.6 μM となり、PL 用量依存的に細胞増殖を抑制した。フローサイクルメトリ測定では、PL 処理により、ミトコンドリア膜電位活性の著明な低下を認め、アポトーシスを起こした細胞数の増加を認めた。特に、PL 処理後において、ROS は顕著に増加傾向を示した。さらに、ROS scavenger である N-acetylcysteine (NAC) を添加することにより、PL 処理後のミトコンドリア膜電位活性の消失、caspase-3/7 活性の増加、アポトーシスは、明らかに抑制され、PL による抗腫瘍効果に、ROS が関与していることが示唆された。PL 処理によりアポトーシス誘導経路として知られる JNK 蛋白は顕著に活性化を認め、この活性化は NAC により完全に抑制された。このことより、PL に誘導されるアポトーシスは JNK 蛋白の活性化が密に関与していることが示唆された。

HSC-3, SAS に対し P53 の発現を検討したが、HSC-3 のみ P53 の増加を認め、P53 ノックダウンにより、アポトーシス前駆蛋白である BAX, PUMA の発現は有意差を持って減少した。この検討において SAS は有意差を持った変化を認めなかった。このことより、P53 経路のアポトーシスは、PL によるアポトーシスにおいて部分的な関与であることが見出された。

本研究は、PL による口腔扁平上皮癌に対する抗腫瘍効果の強い根拠を見出した。PL を応用した口腔扁平上皮癌治療の確立に向けた新しい知見を与え、学位を授与するに値する論文であると判定した。